Physical Science Chapter 1 Review

Write the numbers beside the correct terms below.

concentration	solution	texture
mass	state	volume
mixture	temperature	weight

1. A mixture that is evenly mixed, with all parts the same and not easily separated
2. A combination of different types of matter
3. The amount of space matter takes up
4. The force of gravity on an object (which changes on every planet)
5. The measure of warmth or coolness of matter
6. How tightly and rigidly molecules of some matter are packed together
7. The way an object feels (examples: fuzzy, smooth, sharp) is its
8. The amount of matter in an object is its
9. The ratio of the amount of solute to the amount of solvent in a solution

Write the numbers beside the correct terms below.

atom	electron	molecule	nucleus
compound	element	neutron	proton

10. The smallest amount of an element
11. The part of an atom with a neutral charge
12. The part of an atom with a negative charge
13. The part of an atom with a positive charge
14. Atoms bonded together
15. Any of about 100 types of matter that exist in our world
16. Molecules that are made of more than one kind of element
17. The center of an atom, where protons and neutrons are located

Identify matter based on its properties, including number of protons

18. Example: What kind of matter has 6 protons? \qquad
19. What compound is made up of two hydrogen atoms and one oxygen atom bonded together? \qquad
Compare/contrast states of matter (gas, solid, and liquid)
20. A \qquad has a definite volume and a rigid shape with particles "locked" in place, tightly packed together.
21. A \qquad has a definite volume but it takes the shape of its container. Particles are close together.
22. A \qquad spreads out to fill the available space with particles moving about quickly.

Explain how to increase/decrease concentrations of solutions.
23. To increase the concentration of a solution, \qquad .
24. To decrease the concentration of a solution, \qquad .

